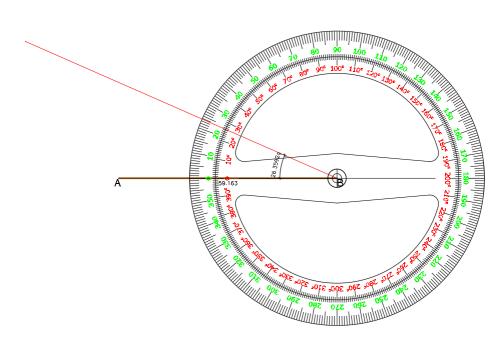
Il teorema dei seni ha un inconveniente quando si deve calcolare un angolo ottuso. Per capire meglio facciamo un esempio.

Esercizio. Di un triangolo si conoscono:

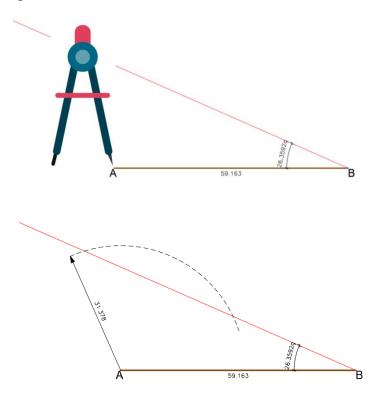
AB = 59,163 m

AC = 31,378 m

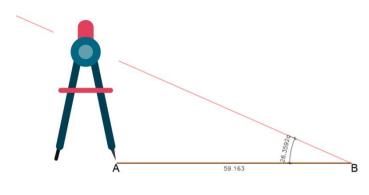
ABC = β = 26°,3592

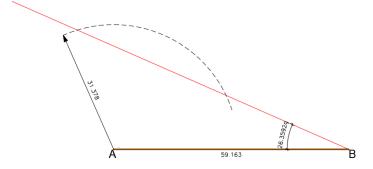

Calcolare:

BAC, ACB, BC, S_{ABC}

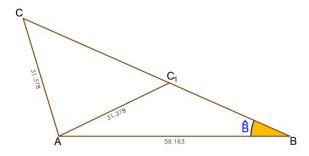

Iniziamo con il disegno (1:1000)

A 59.163 E

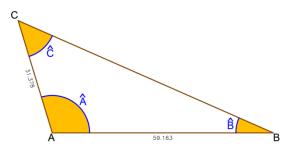

si mette il goniometro in B e si prende l'angolo dato, tracciando una semiretta a piacere



Si prende il compasso puntando in A con apertura pari ad AC e si disegna un arco di cerchio fino ad incontrare la semiretta disegnata



Si prende il compasso puntando in A con apertura pari ad AC e si disegna un arco di cerchio fino ad incontrare la semiretta disegnata

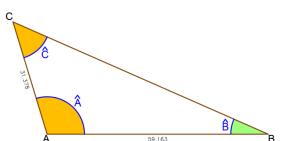


Come si può vedere si ottengono due soluzioni, pertanto bisogna trovarle entrambe

Soluzione 1. Risolviamo il triangolo ABC

Esercizio. Di un triangolo si conoscono:

ABC =
$$\beta$$
 = 26°,3592


$$\frac{\stackrel{\bullet}{AC}}{sen \stackrel{\bullet}{B}} = \frac{\stackrel{\bullet}{AB}}{sen \stackrel{\bullet}{C}} \longrightarrow \stackrel{\bullet}{C} = sen^{-1} \left(\frac{AB \cdot sen \stackrel{\bullet}{B}}{AC} \right)$$

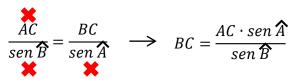
$$\widehat{C} = sen^{-1} \left(\frac{59,163 \cdot sen\ 26^c,3592}{31,378} \right) = 54^c,8204$$

$$AB = 59,163 \text{ m}$$

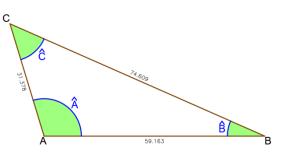
$$AC = 33,103 \text{ n}$$

AC = 31,378 m
ABC =
$$\beta$$
 = 26°,3592

$$\frac{\stackrel{\bigstar}{AC}}{sen \stackrel{\bigstar}{B}} = \frac{\stackrel{\bigstar}{AB}}{sen \stackrel{\bigstar}{C}} \longrightarrow \stackrel{\bigstar}{C} = sen^{-1} \left(\frac{AB \cdot sen \stackrel{\bigstar}{B}}{AC} \right)$$


$$\frac{\ddot{B}}{B} = \frac{\ddot{A}B}{sen C}$$

$$\frac{AB}{B} = \frac{AB}{sen C}$$


il terzo angolo si trova per differenza (la somma deve fare un angolo piatto)

$$\hat{A} = 200^c - (\hat{B} + \hat{C}) = 200^c - (26^c, 3592 + 54^c, 8204) = 118^c, 8204$$

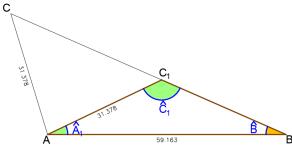
il lato BC si può trovare ancora con il teorema dei seni

$$BC = \frac{31,378 \cdot sen \ 118^c, 8204}{sen \ 26^c, 3592} = 74,609 \ m$$

$$S_{ABC} = \frac{1}{2} \cdot AB \cdot AC \cdot sen \hat{A}$$

$$S_{ABC} = 0.5 \cdot 59,163 \cdot 31,378 \cdot sen \ 118^{c},8204 = 887,94 \ m^{2}$$

Esercizio. Di un triangolo si conoscono:


AB = 59,163 m

AC = 31,378 m

ABC = β = 26°,3592

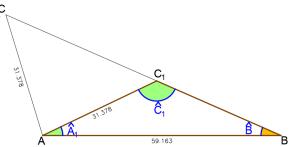
Calcolare: BAC, ACB, BC, S_{ABC}

Soluzione 2. Risolviamo il triangolo ABC₁

Attenzione! Se utilizziamo il teorema dei seni per trovare C₁ la calcolatrice ci fornice lo stesso valore del caso precedente. L'angolo C1 si trova facendo il supplementare di C cioè:

$$\hat{C}_1 = 200^c - \hat{C} = 200^c - 54^c, 8204 = 145^c, 1796$$

Poi si prosegue applicando il normale procedimento...


Esercizio. Di un triangolo si conoscono:

$$AB = 59,163 \text{ m}$$

ABC =
$$\beta$$
 = 26°,3592

ABC =
$$\beta$$
 = 26°,3592

Soluzione 2. Risolviamo il triangolo ABC₁

Attenzione! Se utilizziamo il teorema dei seni per trovare C₁ la calcolatrice ci fornice lo stesso valore del caso precedente. **L'angolo C₁ si trova facendo il supplementare di C cioè**:

$$\hat{C}_1 = 200^c - \hat{C} = 200^c - 54^c, 8204 = 145^c, 1796$$

Poi si prosegue applicando il normale procedimento...

il terzo angolo si trova per differenza (la somma deve fare un angolo piatto)

$$\hat{A}_1 = 200^c - (\hat{B} + \hat{C}_1) = 200^c - (26^c, 3592 + 145^c, 1796) = 28^c, 4612$$

Teorema dei seni

$$\frac{\overrightarrow{AB}}{\operatorname{sen}\widehat{C}_{1}} = \frac{BC_{1}}{\operatorname{sen}\widehat{A}_{1}} \longrightarrow BC_{1} = \frac{AB \cdot \operatorname{sen}\widehat{A}_{1}}{\operatorname{sen}\widehat{C}_{1}}$$

$$BC_1 = \frac{59,163 \cdot sen\ 28^c,4612}{sen\ 145^c\ 1796} = 33,718\ m$$

$$S_{ABC} = \frac{1}{2} \cdot AB \cdot AC_1 \cdot sen \, \hat{A}_1$$

$$S_{ABC} = 0.5 \cdot 59,163 \cdot 31,378 \cdot sen\ 28^{c},4612 = 401,29\ m^{2}$$